Calculator™ © - Free Online Calculators

Online Calculators since 2009

- Impedance Calculator
- Gravitational Field Strength Calculator
- Friction on Inclined Plane Calculator
- Mass Defect Binding Energy Calculator
- Cylindrical Capacitor Calculator
- Image Position And Magnification In Curved Mirrors And Lenses Calculator
- Energy Storage Calculator
- Gravitational Potential Energy
- Final Temperature Of Mixture Calculator
- Equilibrium Using Moments Calculator
- Root Mean Square Speed Calculator

Welcome to our Physics lesson on **Induced Current**, this is the fourth lesson of our suite of physics lessons covering the topic of **Induction and Energy Transfers**, you can find links to the other lessons within this tutorial and access additional physics learning resources below this lesson.

We can still apply the Ohm's Law

i = *ε*_{i}*/**R*

to calculate the current induced in the loop if the resistance of coil is known. Combining this law with the equation

ε_{i} = B ∙ w ∙ v

provided in the previous paragraph, we obtain for the induced current I:

i = *B ∙ w ∙ v**/**R*

Giving that the magnetic force produced in a current carrying wire is

F_{M} = i ∙ B ∙ L

where L is the length of wire (do not confuse it with the inductance explained in the previous tutorial), we obtain for the specific setup discussed in this tutorial where the length of the metal bar L here is represented by the width w of the rectangular coil:

F_{M} = i ∙ B ∙ w

This is true because there is no magnetic force in the direction of the two long sides of the coil but only in the direction of the lateral ones. The only forces acting on the coil are the pulling force (due right) and the magnetic force (due left) which are balanced as the coil moves at constant velocity. Therefore, we obtain for the magnetic force acting on the loop:

F_{M} = (*B ∙ w ∙ v**/**R*) ∙ B ∙ w

=*B*^{2} ∙ w^{2} ∙ v*/**R*

=

From the last equation, we conclude that if the magnetic force F_{m} is constant, the moving speed v of the coil is constant as well. This is because the other parameters such as the magnetic field B, the width of loop w and the resistance R are all constants.

You have reached the end of Physics lesson **16.10.4 Induced Current**. There are 6 lessons in this physics tutorial covering **Induction and Energy Transfers**, you can access all the lessons from this tutorial below.

Enjoy the "Induced Current" physics lesson? People who liked the "Induction and Energy Transfers lesson found the following resources useful:

- Current Feedback. Helps other - Leave a rating for this current (see below)
- Magnetism Physics tutorial: Induction and Energy Transfers. Read the Induction and Energy Transfers physics tutorial and build your physics knowledge of Magnetism
- Magnetism Revision Notes: Induction and Energy Transfers. Print the notes so you can revise the key points covered in the physics tutorial for Induction and Energy Transfers
- Magnetism Practice Questions: Induction and Energy Transfers. Test and improve your knowledge of Induction and Energy Transfers with example questins and answers
- Check your calculations for Magnetism questions with our excellent Magnetism calculators which contain full equations and calculations clearly displayed line by line. See the Magnetism Calculators by iCalculator™ below.
- Continuing learning magnetism - read our next physics tutorial: Induced Electric Fields

We hope you found this Physics lesson "Induction and Energy Transfers" useful. If you did it would be great if you could spare the time to rate this physics lesson (simply click on the number of stars that match your assessment of this physics learning aide) and/or share on social media, this helps us identify popular tutorials and calculators and expand our free learning resources to support our users around the world have free access to expand their knowledge of physics and other disciplines.

- Angular Frequency Of Oscillations In Rlc Circuit Calculator
- Calculating Magnetic Field Using The Amperes Law
- Capacitive Reactance Calculator
- Current In A Rl Circuit Calculator
- Displacement Current Calculator
- Electric Charge Stored In The Capacitor Of A Rlc Circuit In Damped Oscillations Calculator
- Electric Power In A Ac Circuit Calculator
- Energy Decay As A Function Of Time In Damped Oscillations Calculator
- Energy Density Of Magnetic Field Calculator
- Energy In A Lc Circuit Calculator
- Faradays Law Calculator
- Frequency Of Oscillations In A Lc Circuit Calculator
- Impedance Calculator
- Induced Emf As A Motional Emf Calculator
- Inductive Reactance Calculator
- Lorentz Force Calculator
- Magnetic Dipole Moment Calculator
- Magnetic Field At Centre Of A Current Carrying Loop Calculator
- Magnetic Field In Terms Of Electric Field Change Calculator
- Magnetic Field Inside A Long Stretched Current Carrying Wire Calculator
- Magnetic Field Inside A Solenoid Calculator
- Magnetic Field Inside A Toroid Calculator
- Magnetic Field Produced Around A Long Current Carrying Wire
- Magnetic Flux Calculator
- Magnetic Force Acting On A Moving Charge Inside A Uniform Magnetic Field Calculator
- Magnetic Force Between Two Parallel Current Carrying Wires Calculator
- Magnetic Potential Energy Stored In An Inductor Calculator
- Output Current In A Transformer Calculator
- Phase Constant In A Rlc Circuit Calculator
- Power Factor In A Rlc Circuit Calculator
- Power Induced On A Metal Bar Moving Inside A Magnetic Field Due To An Applied Force Calculator
- Radius Of Trajectory And Period Of A Charge Moving Inside A Uniform Magnetic Field Calculator
- Self Induced Emf Calculator
- Self Inductance Calculator
- Torque Produced By A Rectangular Coil Inside A Uniform Magnetic Field Calculator
- Work Done On A Magnetic Dipole Calculator